Sorting aut Notation/Vocabulary + Understanding The FTC

Symbol (^b) F(x) clx T This is a #!	Meaning "Area" between F(x) + X-axis, counting stuff under x-axis as negative	Haw To Calculate Riemann Sums So F(x) dx = lim Rn now = lim Ln, Rn = right hand Riemann sum w/ n rectargles Ln = Left hand Riemann Sum w/ n rectargles Ln = Left hand Riemann Sum w/ n rectargles (an approximate by calculating Rn or Ln w/ a specified # for n Ex. n=4	<u>Vocabulary</u> Definite Integral
(f(x) clx (This is a <u>function</u> ! (technically a "family" of functions)	Antiderivatures of f(x)	"Think backwords" from differentiation (and then add to to make sure we get ALL antiderivatives)	Indefinite Integral
$G(X) = \int_{a}^{X} f(t) dt$ T T This is a function that $utilizes$ the "affect" (append)	Strange Function inputs outputs X> un "area under f(x)"	Can calculate the <u>derivative</u> of this function by g'LXI = f(XI T replace all t's with X's	Fundamental Theorem ut Calculus Part I

This function is an essential part of FTC Part II which relates "areas" to antidifferentiation: $\int_{a}^{b} f(x) dx = F(b) - F(a),$ where F is an antidernative of f.