Summary of Derivative Tests

Note that for all the tests given below it is assumed that the function f is continuous.

Critical Numbers

Definition. A critical number of a function f is a number c in the domain of f such that either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.

Critical numbers tell you where a possible max/min occurs.

First Derivative Test

Use: To find local max/mins
Statement of the test: Suppose c is a critical number.

1. If f^{\prime} changes from positive to negative at c, then f has a local max at c
2. If f^{\prime} changes from negative to positive at c, then f has a local min at c
3. If f^{\prime} is positive to the left and right of c [or negative to the left and right of c], then f has no local max or min at c

Trick to Remember: If you are working on a problem and forget what means what in the above test, draw a picture of tangent lines around a minimum or around a maximum

Steps:

1. Find the critical numbers of f [set $f^{\prime}(x)=0$ and solve]
2. Break up the entire number line using the critical points. Then make the table below:

Interval	Test $\#$	$f^{\prime}(x)=_{\text {_-_- }}$

3. For each interval choose a test number, plug it into $f^{\prime}(x)$, and write down the sign of $f^{\prime}(x)$
4. Use the statement of the test to decide what each critical point is

Remember: The critical points are where the max/min occurs. The function value $f(c)$ is what the \max / min value is.

Finding Intervals of Increase/Decrease

Recall:

- $f^{\prime}(x)>0 \Longrightarrow f$ is increasing
- $f^{\prime}(x)<0 \Longrightarrow f$ is decreasing

Steps:

1. Find the critical numbers of f [set $f^{\prime}(x)=0$ and solve]
2. Break up the entire number line using the critical points. Then make the table below:

Interval	Test \#	$f^{\prime}(x)=\ldots-\ldots$	$f(x)$ is \ldots

3. For each interval choose a test number, plug it into $f^{\prime}(x)$, and write down the sign of $f^{\prime}(x)$
4. Use the sign of $f^{\prime}(x)$ to decide whether $f(x)$ is increasing or decreasing on each interval

Notice that steps (1)-(3) above are exactly the same as the first derivative test. In other words, in order to find the intervals of increase/decrease you need to still do almost all of the same steps as the 1st derivative test. For this reason, if a problem asks you to find the intervals of increase/decrease and to find the local mins/maxes, it makes much more since to use the 1st derivative test, since you need to do all that work anyways.

Concavity Test

Use: Tells you how to determine when a function is concave up or concave down

Statement of Test:

1. $f^{\prime \prime}(x)>0 \Longrightarrow f$ is concave up
2. $f^{\prime \prime}(x)<0 \Longrightarrow f$ is concave down

Second Derivative Test

Use: To find local max/mins. Easier than the 1st derivative test if you don't need to find intervals of increase/decrease.

Statement of Test: Let c be a critical point of a function $f(x)$. Then

$f^{\prime}(c)$	$f^{\prime \prime}(c)$	Critical point is a \ldots
$=0$	<0	$\max ($ concave down $)$
$=0$	>0	$\min ($ concave up)
$=0$	$=0$	inconclusive - use 1st deriv. test

Trick to Remember: If you forget the above test, think about everything in terms of concavity. For example if $f^{\prime \prime}(c)<0$ then you know the function is concave down. Drawing what concave down looks like will easily remind you that this is a max.

Steps

1. Find the critical numbers of f [set $f^{\prime}(x)=0$ and solve]
2. Find $f^{\prime \prime}(x)$
3. Plug each critical point into $f^{\prime \prime}(x)$
4. Use the above table to determine what the critical point is (max or min). If $f^{\prime \prime}(c)=0$ use the 1st derivative test.

Finding Intervals of Concavity/Inflection points

The steps for this are basically the exact same steps used for finding intervals of increase/decrease, except you are applying them to the second derivative.

1. Find the critical numbers of f^{\prime} [set $f^{\prime \prime}(x)=0$ and solve]
2. Break up the entire number line using the critical points. Then make the table below:

Interval	Test \#	$f^{\prime \prime}(x)=_{\ldots}$	$f(x)$ is concave \ldots

3. For each interval choose a test number, plug it into $f^{\prime \prime}(x)$, and write down the sign of $f^{\prime \prime}(x)$
4. Use the sign of $f^{\prime \prime}(x)$ to decide whether $f(x)$ is concave up or concave down
5. (Inflection Points) If $f(x)$ changes concavity at a point c, then you have an inflection point at c

Example

Let $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$. Find intervals of increase/decrease, local max/mins, intervals of concavity, and inflection points.

Intervals of Increase/Decrease

(1) Find Critical Numbers of f [set $\left.f^{\prime}(x)=0\right]$

$$
\begin{aligned}
& f^{\prime}(x)=12 x^{3}-12 x^{2}-24 x=0 \\
& 12 x\left(x^{2}-x-2\right)=0 \\
& x=0, x=-1, x=2
\end{aligned}
$$

Critical Numbers: $x=-1,0,2$
(2) Break up number line and make table:

Interval	Test \#	$f^{\prime}(x)=----$	$f(x)$ is \ldots
$x<-1$	$x=-2$	$(-)$	Decreasing
$-1<x<0$	$x=-1 / 2$	$(+)$	Increasing
$0<x<2$	$x=1$	$(-)$	Decreasing
$x>2$	$x=3$	$(+)$	Increasing

Intervals of Increase: $(-1,0)$ and $(2, \infty)$
Intervals of Decrease: $(-\infty,-1)$ and $(0,2)$

Max/Mins

Method 1: First Derivative Test
This method makes the most sense since we already have the table above.
$x=-1: f^{\prime}(x)$ goes from $(-)$ to $(+) \Longrightarrow$ local min at $x=-1$ and the value is $f(-1)=0$
$x=0: f^{\prime}(x)$ goes from $(+)$ to $(-) \Longrightarrow$ local max at $x=0$ and the value is $f(0)=5$
$x=2: f^{\prime}(x)$ goes from $(-)$ to $(+) \Longrightarrow$ local min at $x=2$ and the value is $f(2)=-27$
Method 2: Second Derivative Test
This is just to show you how to use the second derivative test and that you get the same answer.
We already found the critical numbers $x=-1,0,2$. So we just need the second derivative:

$$
f^{\prime \prime}(x)=36 x^{2}-24 x-24
$$

Now plug each critical point into the second derivative and make a conclusion:
$x=-1: f^{\prime \prime}(-1)=36+24-24>0 \Longrightarrow$ local min at $x=-1$ (concave up)
$x=0: f^{\prime \prime}(0)=0-0-24<0 \Longrightarrow$ local max at $x=0$ (concave down)
$x=2: f^{\prime \prime}(2)>0 \Longrightarrow$ local min at $x=2$ (concave up)

Intervals of Concavity

(1) Find the critical numbers of f^{\prime} [set $f^{\prime \prime}(x)=0$]

$$
\begin{aligned}
f^{\prime \prime}(x)=36 x^{2}-24 x-24 & =0 \\
3 x^{2}-2 x-2 & =0 \\
x & =\frac{2 \pm \sqrt{4-4(3)(-2)}}{2(3)} \\
& =\frac{2 \pm \sqrt{28}}{6}
\end{aligned}
$$

So $x \approx-0.55$ and $x \approx 1.22$
(2) Break up the entire number line using the critical points.

Interval	Test \#	$f^{\prime \prime}(x)=--\ldots$	$f(x)$ is concave \ldots
$x<-0.55$	-1	$f^{\prime \prime}(-1)=36+24-24>0$	up
$-0.55<x<1.22$	0	$f^{\prime \prime}(0)=-24<0$	down
$x>1.22$	2	$f^{\prime \prime}(2)>0$	up

Concave Up: $\left(-\infty, \frac{2-\sqrt{28}}{6}\right)$ and $\left(\frac{2+\sqrt{28}}{6}, \infty\right)$
Concave Down: $\left(\frac{2-\sqrt{28}}{6}, \frac{2+\sqrt{28}}{6}\right)$

Inflection Points

Using the same table as we did for concavity, we see that $f(x)$ changes concavity twice: first at $x=\frac{2-\sqrt{28}}{6}$ from up to down and second at $x=\frac{2+\sqrt{28}}{6}$ from down to up. Hence, both of these are inflection points.

Inflection Points: $x=\frac{2-\sqrt{28}}{6}$ and $x=\frac{2+\sqrt{28}}{6}$

Graph of $f(x)$: Using all the information above you can draw a complete graph of $f(x)$

Closed Interval Method

Use: To find absolute mins/maxes on an interval $[a, b]$

Steps:

1. Find the critical numbers of f [set $f^{\prime}(x)=0$ and solve]
2. Find the value of f at each critical number
3. Find the value of f at each endpoint [i.e., find $f(a)$ and $f(b)$]
4. Compare all of the above function values. The largest one is the absolute max and the smallest one is the absolute min.
