Summary of Derivative Tests

Note that for all the tests given below it is assumed that the function f is continuous.

Critical Numbers

Definition. A critical number of a function f is a number c in the domain of f such that either f'(c) = 0 or f'(c) does not exist.

Critical numbers tell you where a possible \max/\min occurs.

First Derivative Test

Use: To find local max/mins

Statement of the test: Suppose c is a critical number.

- 1. If f' changes from positive to negative at c, then f has a local max at c
- 2. If f' changes from negative to positive at c, then f has a local min at c
- 3. If f' is positive to the left and right of c [or negative to the left and right of c], then f has no local max or min at c

Trick to Remember: If you are working on a problem and forget what means what in the above test, draw a picture of tangent lines around a minimum or around a maximum

Steps:

- 1. Find the critical numbers of f [set f'(x) = 0 and solve]
- 2. Break up the entire number line using the critical points. Then make the table below:

Interval	Test $\#$	$f'(x) = ____$

- 3. For each interval choose a test number, plug it into f'(x), and write down the sign of f'(x)
- 4. Use the statement of the test to decide what each critical point is

Remember: The critical points are where the max/min occurs. The function value f(c) is what the max/min value is.

Finding Intervals of Increase/Decrease

Recall:

- $f'(x) > 0 \implies f$ is increasing
- $f'(x) < 0 \implies f$ is decreasing

Steps:

- 1. Find the critical numbers of f [set f'(x) = 0 and solve]
- 2. Break up the entire number line using the critical points. Then make the table below:

Interval	Test $\#$	$f'(x) = ____$	f(x) is

- 3. For each interval choose a test number, plug it into f'(x), and write down the sign of f'(x)
- 4. Use the sign of f'(x) to decide whether f(x) is increasing or decreasing on each interval

Notice that steps (1)-(3) above are exactly the same as the first derivative test. In other words, in order to find the intervals of increase/decrease you need to still do almost all of the same steps as the 1st derivative test. For this reason, if a problem asks you to find the intervals of increase/decrease and to find the local mins/maxes, it makes much more since to use the 1st derivative test, since you need to do all that work anyways.

Concavity Test

Use: Tells you how to determine when a function is concave up or concave down

Statement of Test:

- 1. $f''(x) > 0 \implies f$ is concave up
- 2. $f''(x) < 0 \implies f$ is concave down

Second Derivative Test

Use: To find local max/mins. Easier than the 1st derivative test if you don't need to find intervals of increase/decrease.

Statement of Test: Let c be a critical point of a function f(x). Then

f'(c)	f''(c)	Critical point is a
= 0	< 0	max (concave down)
= 0	> 0	min (concave up)
= 0	= 0	inconclusive - use 1st deriv. test

Trick to Remember: If you forget the above test, think about everything in terms of concavity. For example if f''(c) < 0 then you know the function is concave down. Drawing what concave down looks like will easily remind you that this is a max.

Steps

- 1. Find the critical numbers of f [set f'(x) = 0 and solve]
- 2. Find f''(x)
- 3. Plug each critical point into f''(x)
- 4. Use the above table to determine what the critical point is (max or min). If f''(c) = 0 use the 1st derivative test.

Finding Intervals of Concavity/Inflection points

The steps for this are basically the exact same steps used for finding intervals of increase/decrease, except you are applying them to the **second derivative**.

- 1. Find the critical numbers of f' [set f''(x) = 0 and solve]
- 2. Break up the entire number line using the critical points. Then make the table below:

Interval	Test $\#$	$f''(x) = ____$	f(x) is concave

- 3. For each interval choose a test number, plug it into f''(x), and write down the sign of f''(x)
- 4. Use the sign of f''(x) to decide whether f(x) is concave up or concave down
- 5. (Inflection Points) If f(x) changes concavity at a point c, then you have an inflection point at c

Example

Let $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$. Find intervals of increase/decrease, local max/mins, intervals of concavity, and inflection points.

Intervals of Increase/Decrease

(1) Find Critical Numbers of f [set f'(x) = 0]

$$f'(x) = 12x^3 - 12x^2 - 24x = 0$$

$$12x(x^2 - x - 2) = 0$$

$$x = 0, \ x = -1, \ x = 2$$

Critical Numbers: x = -1, 0, 2

(2) Break up number line and make table:

Interval	Test $\#$	$f'(x) = ____$	f(x) is
x < -1	x = -2	(-)	Decreasing
-1 < x < 0	x = -1/2	(+)	Increasing
0 < x < 2	x = 1	(-)	Decreasing
x > 2	x = 3	(+)	Increasing

Intervals of Increase: (-1,0) and $(2,\infty)$ Intervals of Decrease: $(-\infty,-1)$ and (0,2)

Max/Mins

Method 1: First Derivative Test

This method makes the most sense since we already have the table above.

x = -1: f'(x) goes from (-) to (+) \implies local min at x = -1 and the value is f(-1) = 0x = 0: f'(x) goes from (+) to (-) \implies local max at x = 0 and the value is f(0) = 5x = 2: f'(x) goes from (-) to (+) \implies local min at x = 2 and the value is f(2) = -27

Method 2: Second Derivative Test

This is just to show you how to use the second derivative test and that you get the same answer.

We already found the critical numbers x = -1, 0, 2. So we just need the second derivative:

$$f''(x) = 36x^2 - 24x - 24$$

Now plug each critical point into the second derivative and make a conclusion:

 $x = -1: f''(-1) = 36 + 24 - 24 > 0 \implies \text{local min at } x = -1 \text{ (concave up)}$ $x = 0: f''(0) = 0 - 0 - 24 < 0 \implies \text{local max at } x = 0 \text{ (concave down)}$ $x = 2: f''(2) > 0 \implies \text{local min at } x = 2 \text{ (concave up)}$

Intervals of Concavity

(1) Find the critical numbers of f' [set f''(x) = 0]

$$f''(x) = 36x^2 - 24x - 24 = 0$$

$$3x^2 - 2x - 2 = 0$$

$$x = \frac{2 \pm \sqrt{4 - 4(3)(-2)}}{2(3)}$$

$$= \frac{2 \pm \sqrt{28}}{6}$$

So $x \approx -0.55$ and $x \approx 1.22$

(2) Break up the entire number line using the critical points.

Interval	Test $\#$	$f''(x) = ____$	f(x) is concave
x < -0.55	-1	f''(-1) = 36 + 24 - 24 > 0	up
-0.55 < x < 1.22	0	f''(0) = -24 < 0	down
x > 1.22	2	f''(2) > 0	up

Concave Up: $\left(-\infty, \frac{2-\sqrt{28}}{6}\right)$ and $\left(\frac{2+\sqrt{28}}{6}, \infty\right)$ Concave Down: $\left(\frac{2-\sqrt{28}}{6}, \frac{2+\sqrt{28}}{6}\right)$

Inflection Points

Using the same table as we did for concavity, we see that f(x) changes concavity twice: first at $x = \frac{2-\sqrt{28}}{6}$ from up to down and second at $x = \frac{2+\sqrt{28}}{6}$ from down to up. Hence, both of these are inflection points.

Inflection Points: $x = \frac{2-\sqrt{28}}{6}$ and $x = \frac{2+\sqrt{28}}{6}$

Graph of f(x): Using all the information above you can draw a complete graph of f(x)

Closed Interval Method

Use: To find absolute mins/maxes on an interval [a, b]

Steps:

- 1. Find the critical numbers of f [set f'(x) = 0 and solve]
- 2. Find the value of f at each critical number
- 3. Find the value of f at each endpoint [i.e., find f(a) and f(b)]
- 4. Compare all of the above **function values**. The largest one is the absolute max and the smallest one is the absolute min.