Music \& Math Summary 3
In general, the space between each sample is

$$
\frac{1}{\text { samplingrale }} s=\frac{1}{f_{s}} s
$$

Given a suund of length l_{1} the \#uf samples taken will be $l \times f_{s}$.
The sampkes are then taken at is followny times:

$$
0, \frac{1}{f_{s}}, \frac{2}{f_{s}}, \frac{3}{f_{s}}, \ldots, l \times f_{s}-\frac{1}{f_{s}}
$$

Ex: Suppose you sample a 20 seand sound with Scompling rote 10 samples $/ s$. (a) Whot is the time between cueh scmple, (b) how many samples will be taken, + (c) at whut times will each sample be tcken?
time between euch sample $=\frac{1}{f_{s}} s=\frac{1}{10} s$.

$$
\begin{aligned}
& \text { H sumples }=l \times f_{s}=20 \text { s } \times 10 \text { samples } / s=200 \text { samples } \\
& \begin{aligned}
\text { tmes } & =0,1 / 10,2 / 10,3 / 10, \ldots, 200-1 / 10 \\
& =0, .1,2, .3, \ldots, 199.9
\end{aligned}
\end{aligned}
$$

Frequency Domain
So for everything we have clone has been in what's called the true domain, i.e. time us. amplitucle

This is very use al for many things?

- its how the pe records clicgital sound
- time clomum info con be used tu digitally speed/slow sound down,
- delete copy, paste sound
- add reverb, echo, etc.
- increase/decrase volume of entire Sound (level)
towever, with only time info how could we:
- pitch currect/auto tune
- increase/decrease volume of specific frequencies ($E Q$-adelbass, etc.)
- analyze frequency data
- remove certain frequencies (low/high pass filters)
* to do all of these things digitally, we need info court the frequencies
This called the frequency clumain (also called spectrum)
Amp. Frequency (Hz)
LABEL

Recall: $S(t)=\sin (2 \pi \times 440 t)$ represents a pare tone $\omega /$ frequency 440 Hz .

Since this is a pure tune (constant frey.) we wald expect the spectrum to only have one spike at 440 Hz and be 0 everywhere else:

What wald we expect for

$$
s(t)=\sin (27 \times 440 t)+\sin (2 \pi \times 880 t) ?
$$

Amp $\underbrace{1000^{4040}}_{\text {wen }}$

So how exactly do we get from tome domain te freq. domains?

* the idea is simple but the implementation is hare

Idea: We know by superposition that all sounds are redly just sums of diff. pure tunes. So the iclea is to somehow take a sound and decompose it into its puretunes since we con easily iclentily the Rrajuency of each pure tune.

- once we know cll the pure tunes, we know all the frequencies in the whole sound!
- the hard part is haw do we decompose a sound into its pure tones?
* The way this is cline is with a mathematical tool called the Fast Founder Trusfurm (FFT).

