Exam 2 Review

November 23, 2017

1. Chapter 16: Probability, Odds, & Expectations

- (a) Know how to count and list events. What is a simple event?
- (b) Counting:
 - i. Multiplication Rule for Counting Know what it is and how to use it. Look at examples done in class and homework.
 - ii. Permutations/Combinations Know what the difference between them is (order matters vs. order doesn't matter). Know how to count objects using the formulas. Look at examples done in class and homework.

(c) Probability:

- i. What is probability? Know the two important properties about probability. What is the probability of an event happening?
- ii. Know what compliment events and independent events are.
 - A. How are compliment events used to calculate probabilities?
 - B. Multiplication principal for independent events.
 - C. Look at examples done in class and homework. Make sure you understand how we used compliment/independent events to make calculating certain probabilities easier.

(d) Expectation:

- i. What is expected value?
- ii. Know how to calculate the total expected value. What does the expected value represent?
- (e) There are many examples that we did in this chapter. Make sure to understand how we used all of the above principals/tricks together to calculate probabilities, especially in examples towards the end of the chapter.

2. Music & Math

- (a) Sound is composed of two elements:
 - i. Loudness:
 - A. What is loudness? How is it measured (units)? What determines a loud sound versus a soft sound?

ii. Pitch:

A. What is pitch? How is it measured (units)? What determines a high pitch versus a low pitch?

(b) Pure Tones:

- i. What is a pure tone?
- ii. How is a pure tone represented mathematically?
- iii. Know how to identify the frequency of a pure tone when given the equation.
- iv. Know how to graph pure tones.
- v. What is the Law of Superposition say?
- vi. How is the Law of Superposition used to mathematically represent sounds?

(c) Frequencies:

- i. What is a fundamental frequency?
- ii. What are overtones?
- iii. Know how to identify between the two when given the equation of a sound.

(d) Analog Vs. Digital Sound

- i. What is analog sound? What is digital sound?
- ii. What is a bit? Given N bits, how many different combinations are there? Know how to list them.

(e) Storing Digital Sound

- i. What is bit rate and sampling rate? How are they used to create a digital signal from an analog signal?
- ii. How does the bit rate and sampling rate correspond to the quality of the digital signal?
- iii. Know how to determine the time between each sample, the total number of samples taken, and at which times the samples are taken (see examples done in class/homework).
- iv. Know how to use the bit rate and sampling rate to label the axes.

(f) Time Domain Vs. Frequency Domain

- i. What is the time domain? What is the frequency domain?
- ii. What are some practical examples for which each of them are used for?
- iii. Given a pure tone or sum of pure tones, know how to graph the spectrum (frequency domain).
- iv. Given any sound, what is the general idea behind the process of going from the time domain to the frequency domain?