Assignment 9

Due: 11/27/2017
(1) Consider the pure tone $s(t)=10 \sin (2 \pi \times 3 t)$,
(a) What is the fundamental frequency? 3 Hz
(b) Graph this sound in the time domain. Make sure to label the x-axis and y-axis correctly.
(c) Graph the spectrum of this sound.
(2) Consider a sound represented by the following function:

$$
s(t)=\sin (2 \pi \times 100 t)+2 \sin (2 \pi \times 200 t)+4 \sin (2 \pi \times 400 t)+5 \sin (2 \pi \times 1800 t)
$$

(a) What is the fundamental frequency and what are the overtones?
(b) Graph the spectrum of this sound. Fundamental $=100 \mathrm{~Hz}$

$$
\begin{aligned}
& \text { Fundamental }=1001+t \\
& \text { Overtunes }=200 \mathrm{~Hz}, 4(\mathrm{~Hz}, 1800 \mathrm{~Hz}
\end{aligned}
$$

(3) Suppose you want to record a 3 second sound using 5 bits and a sampling rate of 8 samples per second. Label the axes of the time domain graph like we did in class. You do not have to plot any sound waves. The axes should have a "tick" showing where each bit is on the y-axis and where each sample will be recorded on the x-axis.

(3) 3 seconds

5 bits $\Rightarrow 2^{s}=32$ possible y-values
8 samples $/ \mathrm{s} \Rightarrow 3 s \times 8$ samples $/ \mathrm{s}=24$ total samples taken time between each sample $=\frac{1}{\gamma} \mathrm{~s}$.

24 samples

