Week 3 Lecture 1

September 11, 2017

- Stretch 8: How many flags could you plant on the surface of the earth (including oceans) so that the distance between any two flags is the same?
 - Hints:
 - * Try drawing.
 - Solution: 2 at the poles or 4 if you place a flag at each point that an inscribed tetrahedron (4 vertices) intersects the surface of the sphere.
- Chapter 4: See It
 - Pictures, Tables, Charts and Graphs
 - * Many problems require you to keep track of information with a table or chart. Another option is to draw a picture or graph to try and see a connection.
 - * Green's Party (Pg. 29)
 - Hints: Try to notice a pattern in the table.
 - Solution: The second column is odd numbers (2n-1) and the third column is squares (n^2) . So when n = 15 the size of the entering group is $(2 \cdot 15 1) = 29$ and the total number of guests is $15^2 = 225$.
 - \cdot How about at ring 100?
 - Models
 - * Creating a physical model can provide a prospective to a problem that is not apparent in a picture.
 - * Tethered Goat (Pg. 35)
 - $\cdot\,$ Make a model
 - · Calculate each area individually and add them all up:

$$(.25)^{2}\pi(10)^{2} + (.25)\pi(20)^{2} + (.75)\pi(50)^{2} = 25\pi + 100\pi + 1875\pi = 2000\pi.$$