Week 3 Lecture 1

September 11, 2017

- Stretch 8: How many flags could you plant on the surface of the earth (including oceans) so that the distance between any two flags is the same?
- Hints:
* Try drawing.
- Solution: 2 at the poles or 4 if you place a flag at each point that an inscribed tetrahedron (4 vertices) intersects the surface of the sphere.

- Chapter 4: See It

- Pictures, Tables, Charts and Graphs

* Many problems require you to keep track of information with a table or chart. Another option is to draw a picture or graph to try and see a connection.
* Green's Party (Pg. 29)
- Hints: Try to notice a pattern in the table.
- Solution: The second column is odd numbers $(2 n-1)$ and the third column is squares $\left(n^{2}\right)$. So when $n=15$ the size of the entering group is $(2 \cdot 15-1)=29$ and the total number of guests is $15^{2}=225$.
- How about at ring 100 ?

- Models

* Creating a physical model can provide a prospective to a problem that is not apparent in a picture.
* Tethered Goat (Pg. 35)
- Make a model
- Calculate each area individually and add them all up:

$$
(.25)^{2} \pi(10)^{2}+(.25) \pi(20)^{2}+(.75) \pi(50)^{2}=25 \pi+100 \pi+1875 \pi=2000 \pi
$$

