Week 2 Lecture 2

September 8, 2017

- Stretch 5: Use three 7's and mathematical symbols to construct an expression equal to 20 .
- Hints:
* List mathematical symbols.
* Just try writing down different combinations. Eliminate all symbols and combinations that obviously don't work.
* Observe that $\frac{7}{.7}=10$. How can we get 20 now using only three 7 's?
- Solution: $\frac{7+7}{7}=\frac{7+7}{\frac{7}{10}}=\frac{14 \cdot 10}{7}=20$.
- Stretch 6: Five circles are equivalent to six triangles. One square is equivalent to a circle and triangle together. How many squares are equivalent to eleven triangles?
- Hints:
* Make sure you understand the problem.
* Draw a picture.
* Think of substitutions.

- Solution:

* Draw a picture and notice that you can substitute 6 triangles for 5 circles. Then substitute 5 circles and 5 triangles for 5 squares.
* Using math: $5 C=6 T$ and $S=C+T$. Therefore, $5 S=5 C+5 T=6 T+5 T=11 T$.
- Shoreline (Pg. 139): What is the length of the shoreline of Mirror Lake (or some other lake at your university of in your town)?
- Solution: (Discuss in groups)
* Increasing the resolution increases the length of bends. i.e., as the resolution increases the total length of the shorelines increases.
* You can continue to increase the resolution more and more every time. Think of first looking at the shoreline from a distance, then kneeling down, then using a magnifying glass, then using a microscope, and so on. Therefore, the total length of the shoreline goes to infinity.
* Shoreline is a fractal - length of the shoreline is infinite.
* In reality and in most practical applications this is not the case. The measured length of the shoreline depends on the accuracy of the device we use to measure it with.

