Part I Definitions and Concepts

1. Given a function $f(x)$, what is the equation for the linearization $L(x)$ of the function at a ?

$$
L(x)=f^{\prime}(a)(x-a)+f(a)
$$

2. Population growth can be modeled by the differential equation $\frac{d P}{d t}=k P(t)$, where $P(t)$ is the population after t years and k is a constant. The solution to this differential equation is

$$
P(t)=P(0) e^{k t}
$$

In this equation,
(a) What does $P(0)$ represent?
(1) Initial condition - Population at time $t=0$
(b) What does k represent?
(1) Average grith rate

Part II Calculations

1. Find the derivative of the following functions.
(a) $y=2^{x^{3}}$
(2)

$$
\begin{aligned}
y^{\prime} & =2^{x^{3}} \ln (2) \cdot \frac{d}{d x}\left(x^{3}\right) \\
& =3 x^{2} 2 x^{3} \ln (2)
\end{aligned}
$$

(1)

OR

$$
\begin{aligned}
& \ln (y)=\ln \left(2^{x^{3}}\right)=x^{3} \ln (2)^{(1)} \\
& (1) \frac{y^{\prime}}{y}=3 x^{2} \ln (2)(1) \\
& y^{\prime}=y 3 x^{2} \ln (2)=2^{x^{3}} 3 x^{2} \ln (2)(1)
\end{aligned}
$$

(b) $f(x)=\frac{\ln ^{2}(x)}{x}=\frac{(\ln (x))^{2}}{X}$

$$
f=(\ln (x))^{2}
$$

$$
y=x
$$

(2)

$$
\begin{equation*}
f^{\prime}=2 \ln (x) \cdot \frac{1}{x} \quad y^{\prime}=1 \tag{1}
\end{equation*}
$$

$$
\begin{align*}
f^{\prime}(x) & =\frac{\left(2 \ln (x)^{\frac{1}{x}}\right)(x)-(\ln (x))^{2}(1)}{x^{2}} \tag{1}\\
& =\frac{2 \ln (x)-\ln ^{2}(x)}{x^{2}}
\end{align*}
$$

2. Use implicit differentiation to find the the derivative of $y^{2}-x^{2}=2 x y$.

$$
\frac{d}{d x}\left(y^{2}-x^{2}\right)=\frac{d}{d x}(2 x y) \quad \begin{array}{cl}
\begin{array}{c}
\text { Product } \\
\text { Rale }
\end{array} & f=2 x
\end{array} \quad f^{\prime}=2 \quad y \quad g^{\prime}=y^{\prime}
$$

$$
\begin{aligned}
& \Rightarrow 2 y^{1} y^{\prime}-2 x=2 y+2 x y^{\prime} \\
& \Rightarrow 2 y y^{\prime}-2 x y^{\prime}=2 y+2 x \\
& \Rightarrow \\
& \Rightarrow y^{\prime}(2 y-2 x)=2 y+2 x \\
& \Rightarrow \\
& \Rightarrow y^{\prime}=\frac{2 y+2 x}{2 y-2 x}=\frac{y+x}{y-x}
\end{aligned}
$$

3. The half-life of cesium-137 is 30 years. Given an initial sample of $70-\mathrm{mg}$, find a formula for the mass of the sample that remains after t years.
$\left.\begin{array}{l}\text { Germerala }\end{array} m(t)=m(0) e^{k t}, 1\right) \quad m(0)=70$

$$
m(30)=\frac{1}{2} m(0)
$$

$$
\begin{aligned}
m(t)= & 70 e^{k t} \\
m(30)= & 70 e^{30 k}=35 \\
& e^{30 k}=35 / 70 \\
& 30 k=\ln (35 / 70) \\
& \text { (1) } k=\frac{1}{30} \ln (35 / 70)
\end{aligned}
$$

$$
=35
$$

$$
\frac{m(t)=70 e^{\frac{1}{20} \ln (55 / 2) t}}{0}
$$

$$
=70 e^{1 / 30 \ln (1 / 2) t}
$$

$$
=70 e^{-\ln (2) / 30}
$$

4. A cylindrical tank with radius 3 m is being filled with water at a rate of $4 \mathrm{~m}^{3} / \mathrm{min}$. [5] How fast is the height of the water increasing? Recall that the volume of a cylinder is $V=\pi r^{2} h$.

$$
\begin{aligned}
\text { Given: } & \frac{d v}{d t}=4 \mathrm{~m}^{2} / \mathrm{min} \\
c & =3 \mathrm{~m}
\end{aligned}
$$

The radius of a cylinder is constant.

$$
\begin{aligned}
& v=\pi(3)^{2} h=9 \pi h \\
\Rightarrow & \frac{d V}{d t}=9 \pi \frac{d h}{d t} \\
\Rightarrow & \frac{d h}{d t}=\frac{4}{9 \pi} \mathrm{~m} / \mathrm{min} .
\end{aligned}
$$

5. Let $g(x)=\sqrt[3]{1+x}$.
(a) Find the linear approximation of $g(x)$ at $a=0$.

$$
\begin{aligned}
& L(x)= y^{\prime}(a)(x-a)+y(a)=y^{\prime}(0)(x-0)+y(0) \\
& y^{\prime}(x)=\frac{1}{3}(1+x)^{-2 / 3} \Rightarrow y^{\prime}(0)=\frac{1}{3} \\
& y(0)=1 \\
& L(x)=\frac{1}{3}(x-0)+1=\frac{1}{3} x+1
\end{aligned}
$$

(b) Illustrate your linear approximation by graphing the tangent line on the graph of $g(x)$ below.

(c) Use the linear approximation you found in part (a) to approximate the number $\sqrt[3]{1.1}$

$$
\begin{aligned}
y(x)=\sqrt[3]{1+x} & \Rightarrow \text { we need } x=0.1 \\
& \Rightarrow g(0.1)=\sqrt[3]{1.1}
\end{aligned}
$$

$$
\begin{equation*}
L(.1)=\frac{1}{3}(.1)+1=\frac{31}{30} \approx 1.0333 \tag{1}
\end{equation*}
$$

