hapter J: + Ategrals Section 5.1 : Areas & Distances The Area Problem we want to find the area Of the region ^S under the $y = P(x)$ $\frac{1}{\sqrt{2}}$ C $y=4$ (x) from $X=c$ to $X=b$. ://s// , : $\mathcal{S} \times \mathcal{S} \times \mathcal{S}$ λ by the bounded by the bounded by λ I try t use rectangles to approximate the area of S. $Ex.$ **EXAMPLE 1** Use rectangles to estimate the area under the parabola $y = x^2$ from 0 to 1 (the parabolic region S illustrated in Figure 3). Exile we said . the idea Ts tv split the region up into rectangles : $y = x^2$
 $S = \begin{bmatrix} (1,1) & & & & & \\ & \searrow & & & & \\ & \se$

You we just have to calculate the crea of each rectangle, I idd them all up: (Area of a rectangle = w.h = $\frac{1}{4}$ · $f(x)$ = $\frac{1}{4}x^{2}$) R_{4} = $(\frac{1}{4}) \cdot (\frac{1}{4})^{2} + (\frac{1}{4}) \cdot (\frac{1}{2})^{2} + (\frac{1}{4}) (\frac{3}{4})^{2} + (\frac{1}{4}) (\frac{1}{1})^{2}$ $\frac{13}{32}$ ~ 0.10015 From the figure we see that: $\frac{1}{3}$ = Actual Area < R_{4} = 0.4 (g8⁻ Alternatively, we can do the same thing using rectangles whose heights are the values of P at the left endpoints: $y = x^2$ (1, 1) $L_{4} = \frac{1}{4} \cdot 6^{2} + \frac{1}{4} \cdot (\frac{1}{4})^{2} + \frac{1}{4} \cdot (\frac{1}{2})^{2} + \frac{1}{4} \cdot (\frac{3}{4})^{2} = \frac{7}{32} \approx 0.2187$ From the figure we see that: $\frac{1}{2}$ = $\frac{1}{2}$ Actual Area > $\frac{1}{4}$ = 0.21875 Votice that if I divide the region into more to more rectangles, we get better ^t better approximations . * Show GIF ? In other words,
A = $lm = \frac{1}{3}$

3) Area,
$$
2(4)
$$
 15
\n $w \cdot h = Ax \cdot P(x)$
\n4) Add up the area, d of the rectangle:
\n $R_n = P(x_1)Ax + P(x_2)Ax + \cdots + P(x_n)Ax$
\n4) Make $2g$ can that the expression Y_0 is better as $n \ge 10$.
\n4) Make $2g$ can that the expression Y_0 is better as $n \ge 10$.
\n4) The equation of the region of the triangle.

We can use this notchion to rewrite the previous formulas:

$$
A = lim_{n\to\infty} R_n = lim_{n\to\infty} \sum_{i=1}^{n} f(x_i)dx
$$

 $A = lim_{n\to\infty} R_n = lim_{n\to\infty} \sum_{i=1}^{n} f(x_{i-1})dx$

EXAMPLE 3 Let A be the area of the region that lies under the graph of $f(x) = e^{-x}$ between $x = 0$ and $x = 2$.

(a) Using right endpoints, find an expression for A as a limit. Do not evaluate the limit. (b) Estimate the area by taking the sample points to be midpoints and using four subintervals and then ten subintervals.

SOLUTION

(a) Since $a = 0$ and $b = 2$, the width of a subinterval is

$$
\Delta x = \frac{2-0}{n} = \frac{2}{n}
$$

So $x_1 = 2/n$, $x_2 = 4/n$, $x_3 = 6/n$, $x_i = 2i/n$, and $x_n = 2n/n$. The sum of the areas of the approximating rectangles is

$$
R_n = f(x_1) \Delta x + f(x_2) \Delta x + \cdots + f(x_n) \Delta x
$$

= $e^{-x_1} \Delta x + e^{-x_2} \Delta x + \cdots + e^{-x_n} \Delta x$
= $e^{-2/n} \left(\frac{2}{n}\right) + e^{-4/n} \left(\frac{2}{n}\right) + \cdots + e^{-2n/n} \left(\frac{2}{n}\right)$

According to Definition 2, the area is

$$
A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} \frac{2}{n} (e^{-2/n} + e^{-4/n} + e^{-6/n} + \cdots + e^{-2n/n})
$$

Using sigma notation we could write

$$
A = \lim_{n \to \infty} \frac{2}{n} \sum_{i=1}^{n} e^{-2i/n}
$$

 F_X cont.

(b) With $n = 4$ the subintervals of equal width $\Delta x = 0.5$ are [0, 0.5], [0.5, 1], [1, 1.5], and [1.5, 2]. The midpoints of these subintervals are $x_1^* = 0.25$, $x_2^* = 0.75$, $x_3^* = 1.25$, and $x_4^* = 1.75$, and the sum of the areas of the four approximating rectangles (see Figure 15) is

$$
M_4 = \sum_{i=1}^{4} f(x_i^*) \Delta x
$$

= $f(0.25) \Delta x + f(0.75) \Delta x + f(1.25) \Delta x + f(1.75) \Delta x$
= $e^{-0.25}(0.5) + e^{-0.75}(0.5) + e^{-1.25}(0.5) + e^{-1.75}(0.5)$
= $\frac{1}{2}(e^{-0.25} + e^{-0.75} + e^{-1.25} + e^{-1.75}) \approx 0.8557$

So an estimate for the area is

$$
A \approx 0.8557
$$

With $n = 10$ the subintervals are [0, 0.2], [0.2, 0.4], . . . , [1.8, 2] and the midpoints are $x_1^* = 0.1, x_2^* = 0.3, x_3^* = 0.5, \ldots, x_{10}^* = 1.9$. Thus

$$
A \approx M_{10} = f(0.1) \Delta x + f(0.3) \Delta x + f(0.5) \Delta x + \dots + f(1.9) \Delta x
$$

= 0.2(e^{-0.1} + e^{-0.3} + e^{-0.5} + \dots + e^{-1.9}) \approx 0.8632

From Figure 16 it appears that this estimate is better than the estimate with $n = 4$.

Ex suppose the odometer on our car is proken and we want to estimate the distance driven over a 30-second interval we take speedometer readings every five seconds and record them:

