
Chapters : Integrals

Section 5.1 : Areas t Distances

The Area Problem

we want to find the area
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Idea: try t use rectangles to approximate
the area of S .
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the idea Ts tv split the region up into rectangles :
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Now we just have to calculate the area of each rectangle ,
+

Gdd them all up
: ( Area of a rectangle

= W . h = ¥ . fix , = +4×2 )
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¥20.46875

From the figure we See that :

§ = Actual Area < Re
,

= 0.46875

Alternatively ,
we can do the same thing using rectangles whose

heights are the values of f Ct the left endpoints :

Ly=ty . 02 + E
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'
= } = 0.21875

From the figure we See that :

B = Actual Area > L4=0.21875
Notice the it I divide the

region into more a more rectangles ,

we get better t better approximations .

* Show GIF ?
In other words
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A = nlgg Rn = fans hn = +3 '



Now let's apply the idea of the
previous example to a general

region S :
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of equal width .
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The right endpoints of the sbmknds are

x ,
= atsx

Xz = at ZAX

Xz = at 3 DX
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2) Approximate each strip with a rectangle of width Sx and

height FLXD ( value of fat right endpoint )
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3) Area of each rectangle is

w . h = Ax . fcxi )

4) Add
up the area up all the rectangles :

Rn = fcx
,
) Sxt fcxz ) DX + .

.
 it fan ) Ax

* Notice again the the approximation gets
better as n

?W
.

There here
,

this Ts how we dekne the area of a

region .

It can be Shown that we get the same value using left endpoints :

Notation : §n
,

flxi ) DX = kx
. )dx+ flxddx + . . . + fun ) Sx

This Sint of sum is called a Riemann Sum



We con use this notation to rewrite the previous formulas :
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The Distance Problem

Fact : Distance travelled = Area under velocity graph
,
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